
Relational Databases
S d R i iSummary and Revision

R l i l d b i f f l i (bl) i hi hRelational databases consist of a set of relations (tables) in which
– columns are named and typed
– rows are identified only by the data they holdy y y
– no two rows hold exactly the same data
– one or more unique columns are chosen to identify the rows

• primary key• primary key

There are only two ways of relating data
– by putting the data in the same row of a table
– by relating rows by making them hold a common value

• foreign keysg y

457 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

Designing a Relational Database

There are two main ways of proceeding:
– conceptual modelling (e.g. ER)

d fi hi h l l d l f h d d d i h i f• define a high level model of the data and derive the appropriate set of
tables

– normalisation
• list all the data in one table and then break it down into appropriate

separate tables

The two techniques give rise to a similar set of tables

458 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

ER Modelling I

Identify the principal kinds of object you wish to hold data about – entity
types

th b t bl– these become tables

Identify the attributes of the entity types
– each attribute holds one or more 'simple' values usually a number or short

string
– one or more attributes becomes the primary key of the entity and thus the p y y y

table
• most entity types are self-contained (strong) and have such a key
• although sometimes you have to invent an artificial new attribute to bealthough sometimes you have to invent an artificial new attribute to be

this key
• but some (weak) entity types have no primary key, but are dependent

for uniqueness on another entity type and so must import part of theirfor uniqueness on another entity type and so must import part of their
key from an owning entity type

– these become columns of the entity types
lti l d tt ib t b t bl i th i i ht

459 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

– multi-valued attributes become tables in their own right

ER Modelling II

Identify the relationships between the entity types
– each of these represents a set of connected entities

– most are between two entity types and so consist of pairs of entities, one from
each type

d t t t f h tit t ti i ti i l ti hi– we need to state for each entity type participating in a relationship
• if every entity must participate or not (total/partial participation)
• if any entity can participate more than once

– the latter gives rise to three situations
• each entity can only participate once on each side (1-1)

– these become a foreign key column in one side, preferably a totally
participating side

• on one side an entity can participate only once, but on the other an entity
can participate many times (1-N)

– these become a foreign key column in the N side
• entities on both sides can participate more than once (M-N)

460 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

p p ()
– these become a separate table

Normalisation

Start by listing all the data as if it were in one big table and identify a
primary key

Identify functional dependencies

S li h bl i d d h d li i f d i h l iSplit the tables up in order to reduce the duplication of data without losing
the functional dependencies

– if the primary key has more than one column in it and if any other column
is dependent on only part of the key then a new table should be formed

• (A, B, C) and A -> C means every repetition of an A redundantly
repeats a C2NF p

• make it (A, B) and (A, C) – note never throw away the key

– if there are columns which are indirectly dependent on the key then y p y
again there is redundant repetition of these columns

• (A, B, C) and A-> B and B -> C means every repetition of B
redundantly repeats C3NF

461 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

redundantly repeats C
• make it (A, B) and (B, C)

3NF

Adding Constraints

The table structure constrains the data structure in some ways

It can further be constrained by further restrictions on the data:It can further be constrained by further restrictions on the data:

– stating some columns are unique – (i.e. never repeated in the table)

stating some columns are not null (i e have a value for all rows)– stating some columns are not null – (i.e. have a value for all rows)

– stating that one or more columns make up the primary key
• which amounts to being both unique and non-nullg q

– stating that the range of values in a column are restricted (check)

– stating that one or more columns is a foreign key– stating that one or more columns is a foreign key
• i.e. takes the values from an equivalent number of columns in a table –

usually these are a primary key
• e g if we have T1(A B C) and we want to put a foreign key to thise.g. if we have T1(A, B, C, ...) and we want to put a foreign key to this

table in table T2, we have to add two columns, D and E, i.e.
– T2(...., D, E, ...) and then
– (D E) refers to T1(A B)

462 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

(D, E) refers to T1(A, B)

Implementing a Relational Database

Use a GUI to create the tables, their columns and their constraints

Use SQL Create Tables

Manipulating a Relational Database
Data is added by:

– importing data
– using SQL insert

i li i i h G d f i f– using an application with a GUI and a form interface
• the application will have some way of doing inserts for you

Data is updated
– using SQL update and delete

463 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

– using an application with a GUI and a form interface

Querying a Relational Database

The user specifies queries directly using
– SQL select which specifies what we want in terms of:

• the tables we must look in:
– ones which have data to check

ones with data to print

From

– ones with data to print
– together with any connecting tables

– the DBMS will then consider each combination of records one
from each of these tables

• tests on the data to see which particular rows we want Where
• the columns we want to see

– or an application with a GUI

Select
pp

• which again will making use of SQL select in some way

464 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

Relational Algebra

The DBMS maps SQL select queries into relational algebra which is a series
of steps

h d i (i t l) t bl i– each producing a new (virtual) table or view

– either reducing one table or view into some of the rows (select - σ) or some
of the columns (project - Π)(p j)

– or connecting two tables
• joining () two tables puts together each pair of records from the

tables which share a common value to form a single records containing
all the data from each

– this is the reverse of normalisation
– outer joins create rows out of unpaired data filling them out with

nulls
• a union of two tables with the same number and same types of columns yp

creates a table with all of the records which are in each
• intersection and difference take two similar tables and produce the table

with records which are in both or in only one

465 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

with records which are in both or in only one

Case Study: Dream Home Property Management
(from "Database Systems" by Connolly and Begg)

The database must support the following requirements:

1 Data Requirements:1. Data Requirements:
– The company has a number of branches and staff working at those

branches.
– The company maintains a number of properties (each managed by a

specific member of staff), their owners and a list of clients who rent these
properties.

– A client will view properties and may eventually commit to renting one, in
which case a member of staff organises a lease.

2. Functional (Transaction) Requirements (extract):
– List the addresses of all of the properties and those managed by a

particular member of staff.p
– List all the clients viewing properties owned by a particular person.
– Identify clients who have inspected all properties with 3 rooms.

Add th d t il f l

466 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

– Add the details of a new lease.

ER Diagram

StaffLease

1
n

WorksAt
1

n

Holds
n

Client
BranchRents manages

n
1

n

1

1Holds
1

Property
Views

with

n

n

n

m
1

Attributes on entity types: on relationships:

OwnerOwns 1

Attributes on entity types: on relationships:
– Staff - staff number, name, tel, sex, title Views - date
– Client - id, name, address, tel

B h b dd t l f– Branch - number, address, tel, fax
– Property - number, address, type, rooms, rent
– Owner - id, name, address, tel

b d d d h d d i

467 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

– Lease - number, date_start, date_end, rent, payment_method, deposit

Creation of Tables I

1. For each entity type, create a table, viz:
Staff, Client, Branch, Property, Owner, Lease

2. Add columns for each attribute, e.g.:
Staff(staffNumber: number, name: text, tel: text, sex: text, title: text)

3. Identify keys:
Staff – staffNumber Client – id Branch – number

Property - number Owner - id Lease - number

But note, alternative candidate keys:
Branch - tel or fax Property – address

4. Identify other constraints on columns, e.g.:
uniqueness – none obvious here

non-null – staff name, property address, etc.

checks staffNumber is between 1000 and 1999 sex is 'F' or 'M'

468 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

checks – staffNumber is between 1000 and 1999 sex is 'F' or 'M'

Creation of Tables II

5. For each 1-N relationship put a foreign key column in the N-side entity
table, each of which refers to the primary key column:

Manages a column managedBy in PropertyManages - a column managedBy in Property
Holds - a column heldBy in Lease
Rents - a column onProperty in Lease
Owns - a column owner in Property
WorksAt - a column worksAt in Staff
With l b hOf i PWith - a column branchOf in Property

6. For each M-N relationship, create a new table:
Views with foreign key columns client and property andViews - with foreign key columns client and property and

primary key also both columns, client and property.

7 For each relationship attribute put a column in the table with the7. For each relationship attribute, put a column in the table with the
foreign key:

In the Views table, add a column, date.

469 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

The Resulting Tables I

create table Staff(
staffNumber: Number constraint pk_staff primary key,
name: Text not nullname: Text not null,
tel: Text,
sex: Text constraint ck-sex check sex in (‘M’, ‘F’),
title: Texttitle: Text,
worksAt: Number constraint fk_worksat references Branch(number))

t t bl B h(create table Branch(
number: Number constraint pk_branch primary key,
address: Text not null,
tel: Text unique not null,
fax: Text unique not null)

470 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

The Resulting Tables II

create table Client(
id: Number constraint pk_client primary key,
name: Text not nullname: Text not null,
address: Text not null,
tel: Text not null)

create table Property(
number: Number constraint pk_property primary key,
address: not nulladdress: not null,
type: not null,
rooms: Number,

t N brent: Number,
managedBy: Number not null

constraint fk_manages references Staff(staffNumber),
b hOf N b t llbranchOf: Number not null

constraint fk_with references Branch(number) ,
owner: Number not null

471 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

constraint fk_owns references Owner(id))

The Resulting Tables III

create table Lease(number: Number constraint pk_lease primary key,
date_start: Text not null,
date end: Textdate_end: Text,
rent: Number not null,
payment_method: Text not null,
onProperty: Number constraint fk on references Property(number)onProperty: Number constraint fk_on references Property(number),
deposit: Number,
heldBy: Number constraint fk_heldBy references Client(id))

create table Owner(id: Number constraint pk_owner primary key,
name: Text not null,
dd T taddress: Text,

tel: Text not null)

t t bl Vi (create table Views(
client: Number constraint fk_vclient references Client(id),
property: Number constraint fk_vprop references Property(number),

472 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

date: Text,
constraint pk_views primary key(client, property))

The Role of Normalisation

The Universal Relation would be:
U(leaseNumber, staffNumber, staffName, staffTel, staffSex, staffTitle,

branchNumber branchAddress branchTel branchFax date startbranchNumber, branchAddress, branchTel, branchFax, date_start,
date_end, leaseRent, payment_method, deposit, clientID, clientName,
clientAddress, clientTel, propertyNumber, propertyAddress, type, rooms,
propertyRent ownerID ownerName ownerAddress ownerTelpropertyRent, ownerID, ownerName, ownerAddress, ownerTel,
viewingDate)

h i k i h d fi d h i i l iThe primary key is hard to find – the minimal set is:
clientID, propertyNumber

since everything is determined by thesesince everything is determined by these.

473 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

The Functional Dependencies

Functional dependencies include:
– staffNumber -> staffName, staffTel, staffSex, staffTitle,

branchNumber branchAddress branchTel branchFaxbranchNumber, branchAddress, branchTel, branchFax

– branchNumber -> branchAddress, branchTel, branchFax

clientID > clientName clientAddress clientTel– clientID -> clientName, clientAddress, clientTel

– leaseNumber -> everything except viewing date

– propertyNumber -> propertyAddress type rooms propertyRentpropertyNumber > propertyAddress, type, rooms, propertyRent,
ownerID, ownerName, ownerAddress, ownerTel,
managingStaffNumber, managingStaffName, etc.

ID N Add T l– ownerID -> ownerName, ownerAddress, ownerTel

– clientID, propertyNumber -> viewingDate, leaseNumber

474 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

Second Normal Form

Second Normal Form splits off those relations dependent upon part of any
candidate key:

Client(clientID, clientName, clientAddress, clientTel)

Property(propertyNumber propertyAddress type rooms propertyRentProperty(propertyNumber, propertyAddress, type, rooms, propertyRent,
ownerID, ownerName, ownerAddress, ownerTel)

ClientProperty(leaseNumber, staffNumber, staffName, staffTel, staffSex,ClientProperty(leaseNumber, staffNumber, staffName, staffTel, staffSex,
staffTitle, branchNumber, branchAddress, branchTel, branchFax,
date_start, date_end, leaseRent, payment_method, deposit, clientID,
propertyNumber, viewingDate)p p y , g)

475 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

Third Normal Form

Third normal form splits off transitive dependencies, split Property into:
Property(propertyNumber, propertyAddress, type, rooms, propertyRent)

(dd l)Owner(ownerID, ownerName, ownerAddress, ownerTel)

From ClientProperty split off :p y p
Staff(staffNumber, staffName, staffTel, staffSex, staffTitle,

branchNumber) // aka worksAt
Branch(branchNumber branchAddress branchTel branchFax)Branch(branchNumber, branchAddress, branchTel, branchFax)
Lease(leaseNumber, staffNumber, date_start, date_end, leaseRent,

payment_method, deposit)
l ileaving:

ClientProperty(clientID, propertyNumber, viewingDate, leaseNumber)

476 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

A Difference!

Note that this has created a slightly different set of tables from ER since
we are using information not expressible in ER

th t th i l l f th i i f li t d t– that there is only one lease for the pairing of a client and a property
– this moved the foreign key

From ER we got
Lease(leaseNumber, staffNumber, date_start, date_end, leaseRent,

payment method, deposit, clientID, PropertyNumber)payment_method, deposit, clientID, PropertyNumber)

ClientProperty(clientID, propertyNumber, viewingDate)

From Normalisation we got
Lease(leaseNumber, staffNumber, date_start, date_end, leaseRent,

payment method deposit)payment_method, deposit)

ClientProperty(clientID, propertyNumber, viewingDate,
leaseNumber)

477 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

)

Implementing the Transactions

Two methods:
1. SQL - a user-oriented language for managing the data in the database;
2. The Relational Algebra - the operations that the DBMS executes to implement the g p p

SQL queries.

Examples:p
1. List the addresses of all of the properties and those managed by a particular

member of staff, e.g. 'John Smith':

In SQL (all properties): In Relational Algebra
select address from Property π address (Property)

select address from Property, Staff JS ← σ name = "John Smith" (Staff)
where Staff.name = "John Smith" JSprops ← JS Property on

and staffNumber = managedBy staffNumber = managedBy
π address (JSprops)

478 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

2. List all the clients viewing properties owned by a particular person, e.g. Jane
Smith.
select Client name JS ← σ "J S ith" (Owner)select Client.name JS ← σ name = "Jane Smith" (Owner)

from Client, Views, Property, Owner JSprops ← JS Property on
idowner = id

where Owner.name = "Jane Smith" JSviews ← JSprops Views on

and Property.owner = owner.id property = number

and Views.property = JSvClients ← JSviews Client on
Property.number client = id

and Views.client - client.id π clientname (JSviewingClients)

479 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

3. Identify clients who have inspected all properties with three rooms.
select C.name 3rooms ← σ rooms=3 (Property)
f Cli t C 3 N (3)from Client C 3roomsNos ← π number (3rooms)
where not exists reduceView ← π client,property (Views)
((select P.number from Property P 3roomClientNos ← reduceView ÷ 3roomsNos

where P.rooms = 3) 3roomClients ← Client 3roomClientNos
minus on id = client

(select V.property from Views V result ← πname (3roomClients)(p p y name ()
where C.id = V.client))

4 Add the details of a new lease4. Add the details of a new lease.
The Relational Algebra doesn’t deal with updates.

insert into Lease values(1234, "1/1/05", "31/12/05", 240, "monthly", 432, 500, (, , , , y , , ,
16543, 132)

which creates a new Lease numbered 1234 made by staff member 16543 for client
132 t 432

480 26/11/2009MSc/Dip IT – ISD L19 Relations Revision (457-480)

132 on property 432.

